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Abstract—In this letter, we study a downlink non-orthogonal
multiple access (NOMA) transmission system, where only average
channel state information (CSI) is available at the transmitter.
Two criteria in terms of transmit power and user fairness for
NOMA systems are used to formulate two optimization problems,
subjected to outage probabilistic constraints and the optimal
decoding order. We first investigate the optimal decoding order
when the transmitter knows only the average CSI, and then
we develop the optimal power allocation schemes in closed-form
by employing the feature of the NOMA principle for the two
problems. Furthermore, the power difference between NOMA
systems and OMA systems under outage constraints is attained.

Index Terms—Non-orthogonal multiple access (NOMA), av-
erage channel state information, power allocation, probabilistic
constraints

I. INTRODUCTION

Recently, non-orthogonal multiple access (NOMA) based on
successive interference cancellation (SIC) has been recognized
as one of the promising multiple access technologies to be used
for fifth generatin (5G) communication [1]. Different from
conventional orthogonal multiple access (OMA), e.g. time-
division multiple access (TDMA), NOMA introduces an new
dimension – power domain for multiple access.

The works in [2] and [3] focused on analysing the perfor-
mance of the NOMA scheme in terms of outage probability
and user pairing, where the fixed power allocation scheme is
characterized. To further exploit the potential gain of NOMA
in the power domain, the problem to maximize the worst user
throughput has been studied in [4] with the total throughput
constraint and in [5] with the total transmission power con-
straint, respectively. In [6], a joint power and subcarrier alloca-
tion policy has been proposed in multicarrier NOMA system.
Most of the existing works on NOMA assume that perfect
channel state information (CSI) is available at the transmitter.
However, such an assumption is considered idealistic [7] due
to the limited CSI feedback. Generally, imperfect CSI can
lead to substantial performance degradation, such as quality
of service (QoS) outages, if not taken care of properly.

This paper derives the relationship between power control
and QoS requirements based on outage probabilities in NO-
MA systems. While the problem of outage balancing under
the power constraint has been studied [5] and [8], there is
little literature that addresses power-allocation methods to
minimize transmitter power subject to probabilistic constraints
and maximize rate fairness under constraints using outage

J. Cui and P. Fan are with the Institute of Mobile Communications,
Southwest Jiaotong University, Chengdu 610031, P. R. China. (email: cui-
jingj@foxmail.com, p.fan@ieee.org).

Z. Ding is with the School of Computing and Communications, Lancaster
University, LA1 4YW, UK. (e-mail: z.ding@lancaster.ac.uk).

This work was supported by the National Science and Technology Ma-
jor Project (No.2016ZX03001018-002), the National Science Foundation of
China (NSFC, No.61471302), and 111 Project (No. 111-2-14).

probabilities and power constraints in NOMA systems. In
general, intelligent power allocation is critical in wireless
networks for improving the spectral efficiency and realizing
the users’ QoS goals. Therefore, the two addressed problems
in the paper provides an important insight of NOMA for future
communications. Furthermore, the optimal SIC decoding order
has been found under the outage constraints when the average
CSI is unchangeable during a timeslot. Finally, the provided
simulation results demonstrate that NOMA outperforms OMA
with the two proposed power allocation schemes.

II. SYSTEM MODEL

Consider a cellular downlink NOMA scenario with one BS
and M users denoted as the set M = {1, · · · ,M}. All nodes
are equipped with a single antenna. The NOMA principle is
used for transmission purposes. Therefore, the observation at
the m-th user is given by

ym = hm

M∑
i=1

√
Pisi + nm,m ∈ M, (1)

where si is the message for the i-th user, hm denotes the
channel gain between the BS and the m-th user. We assume
perfect CSI is available on the users, but only average CSI is
available on the BS. In particular, it is assumed that hm =
d−γ
m gm, with dm being the distance from the m-th user to the

BS, where γ is the pass loss exponent, and gm ∼ CN (0, 1).
Without loss of generality, the distances are sorted as d1 ≥
d2 ≥ · · · ≥ dM . Pm is the transmission power allocated for
the m-th user and nm denotes zero-mean additive noise of the
m-th user with variance σ2

m.
In this case, each user employs SIC in a successive order to

remove partial inter-user interference. As a result, the decoding
order is an essential issue for the NOMA system. Denote by
π(m) the user index corresponding to the decoding order m.
Let R

π(m)
π(j) denote the rate for user π(m) to detect the user

π(j)’s message, j ≤ m, which can be expressed as

R
π(m)

π(j) = log

(
1 +

|hπ(m)|2Pπ(j)∑M
i=j+1 |hπ(m)|2Pπ(i) + σ2

π(m)

)
. (2)

Since the perfect CSI is not available at the BS, an outage
event may happen in NOMA systems, which is defined as
that user π(m) is not able to decode its own message or the
message of the weaker user π(j), j < m [2].

Therefore, the outage probability at user π(m) can be
expressed as

P out
π(m) = 1− P

(
R

π(m)

π(1) ≥ R̃
π(m)

π(1) , · · · , Rπ(m) ≥ R̃π(m)

)
= 1− e

−λm max
j=1,···m

ϕπ(j)σ
2

Pπ(j)−ϕπ(j)
∑M

i=j+1
Pπ(i) ,

(3)

where λπ(m) = dγπ(m), ϕπ(j) = 2R̃π(j) − 1 and R̃π(j) is
the targeted data rate of user π(j) . Note that Pπ(j) >

ϕπ(j)

∑M
i=j+1 Pπ(i). If Pπ(j) ≤ ϕπ(j)

∑M
i=j+1 Pπ(i), the out-

age probability of user π(j) will be always one.
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III. PROBLEM FORMULATION
In NOMA, power allocation is an important issue to en-

hance the achievable rate of each user due to power-domain
multi-user multiplexing. In this section, two power allocation
schemes based on two criteria–transmit power and fairness rate
will be studied separately, where only average CSI is known
at the BS.
A. Minimizing transmission power

The problem of interest here is to design the system, which
should provide an acceptable QoS requiring as little transmit
power as possible, and serving as many users as possible. In
particular, the problem of minimizing the total transmit power
subjected to individual outage constraints under the optimal
decoding order, can be formulated as follows:

min
{Pπ(m)},π

M∑
m=1

Pπ(m) (4a)

s.t. P out
π(m) ≤ ϵπ(m), m ∈ M, (4b)

Pπ(m) > ϕπ(m)

∑M
i=m+1 Pπ(i), m ∈ M, (4c)

Pπ(m) ≥ 0, m ∈ M, (4d)
π ∈ Π. (4e)

where Π represents the set of all possible SIC decoding orders
for the NOMA system. Specifically, ϵπ(m) ∈ [0, 1) is denoted
by the maximum tolerable outage probability for user π(m).
By substituting (3) into (4b) and then using the basic properties
of inequalities and the logarithm operator to (4b), the outage
constraint for user π(m) can be transformed into a linear
constraint as follows:

min
j=1,··· ,m

Pπ(j) − ϕπ(j)

∑M
i=j+1 Pπ(i)

ϕπ(j)
≥ ρπ(m), (5)

where ρπ(m) =
λπ(m)σ

2
π(m)

log 1
1−ϵπ(m)

. However, due to the combina-

tional nature of decoding order, the problem of (5) can not be
solved directly by a standard optimization solver [9]. Before
the next step, we first introduce the following Proposition.
Proposition 1: Without loss of generality, we assume

that π(j) = j. Let xj = Pj − ϕj

∑M
i=j+1 Pi, j = 1, · · · ,M ,

xj > 0. The equations in (6) are guaranteed.

Pj = xj + ϕj

M∑
n=j+1

n−1∏
l=j+1

(1 + ϕl)xn, (6a)

∑M
j=1 Pj =

∑M
j=1 βjxj , where (6b)

βj =

{
1, j = 1;∏j−1

i=1 (1 + ϕi), j = 2, · · · ,M.
(6c)

Proof: We introduce the auxiliary parameter xj = Pj −
ϕj

∑M
i=j+1 Pi, j ∈ M. It is easy to know that xj > 0, ∀j ∈

M due to the the constraint of (4c). As a result, one can write
the power Pj as

Pj = xj + ϕj

∑M
i=j+1 Pi, j ∈ M. (7)

To obtain the closed-form expression for Pj , we calculate the
sum,

∑M
i=j+1 Pi. By using the relationship in (7), we can

obtain the following results for a fixed feasible j.
M∑

i=j+1

Pi = xj+1 + (1 + ϕj+1)

M∑
i=j+2

Pi, (8a)

= xj+1 +

M∑
n=j+2

n−1∏
l=j+1

(1 + ϕl)xn =

M∑
n=j+1

βnxn. (8b)

where βn =
∏n−1

l=j+1(1+ϕl) and the right hand side (r.h.s) of
(8b) is attained by forcing βn = 1 if l > n−1. By substituting

the left hand side (l.h.s) of (8b) into (7), (6a) can be obtained.
(6c) can be derived directly by setting j = 0 in the r.h.s of
(8b) and β1 = 1.

From (6), the minimization transmit power problem in (4)
can be reformulated as

min
{xπ(m)},π

M∑
m=1

βπ(m)xπ(m) (9a)

s.t. min
j=1,··· ,m

xπ(j)

ϕπ(j)

≥ ρπ(m), m ∈ M, (9b)

xπ(m) > 0, m ∈ M & (4e). (9c)

Note that the objective function is monotonically increasing
with xπ(m). The optimal decoding order is given in the
following theorem.

Theorem 1: For the optimization problem in (4), the
optimal decoding order π∗ satisfies

ρπ∗(1) ≥ ρπ∗(2) ≥ · · · ≥ ρπ∗(M). (10)

where ρπ∗(m) =
λπ∗(m)σ

2
π∗(m)

log 1
1−ϵπ∗(m)

.

Proof: See proof in the Appendix A.
For a known optimal decoding order π∗, the optimal power

allocation for (9) can be derived in the following proposition.
Proposition 2: The optimal solution for problem (9) is

given by
Pπ∗(m) = ϕπ∗(m)·[

ρπ∗(m) +

M∑
j=m+1

ϕπ∗(j)ρπ∗(j)

j−1∏
n=m+1

(ϕπ∗(n) + 1)

]
(11)

for any m ∈ M.
Proof: The constraints in (9b) can be equivalently ex-

pressed as
xπ∗(m)

ϕπ∗(m)

≥ max
{
ρπ∗(m), · · · , ρπ∗(M)

}
,m ∈ M. (12)

By applying the Theorem 1, it is easy to obtain
xπ∗(m)

ϕπ∗(m)
≥ ρπ∗(m),m ∈ M. (13)

In addition, note that xπ∗(1), · · · , xπ∗(M) are independent
and the objective function of (9) is linear. Therefore, the
optimal solution of (9) will be obtained at all the constraints
with equalities [10], [11]. Thus by substituting xπ∗(m) =
ϕπ∗(m)ρπ∗(m) m ∈ M into (6a), (11) can be attained.

From Theorem 1, one can find that the optimal decoding
order is independent of the choice of the targeted data rate.
Therefore, it is easy to see from (11) the power allocation
for user π∗(m) is a monotonically increasing function of the
targeted data rate of the users π∗(j) satisfying j ≥ m.

B. Maximizing fairness rate
In this subsection, we consider to provide QoS guarantees

within a tolerable outage probability for the users. Specifically,
we consider the problem of maximizing the worst user’s
received rate giving the maximum tolerable outage probability
for each user m, which can be formulated as

max
{Pπ(m)},{R̃π(m)},π

min
m=1,··· ,M

R̃π(m) (14a)

s.t.
∑M

m=1 Pπ(m) ≤ P, (14b)
(4b) − (4e). (14c)

Note that the outage constraint in (5) is equivalent to (4b).
Therefore, using the property of inequality like (12), (5) can
be rewritten as

ϕπ(m) ≤
Pπ(m)∑M

i=m+1 Pπ(i) + ρ∗π(m)

, m ∈ M, (15)
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where ρ∗π(m) = maxj=m,··· ,M
{
ρπ(j)

}
. ρπ(j) and ϕπ(m) have

been defined in section III-A.
Proposition 3: The optimal decoding order for problem

(4) is the same as problem (14).
The proof of Proposition 3 is similar to the proof of Theo-

rem 1 and is omitted here. As a result, ρ∗π(m) = ρπ∗(m). Given
the optimal decoding order π∗, by introducing an additional
variable t, the optimization problem can be reformulated as
max t (16a)
s.t. t = min

m∈M
ϕπ∗(m), (16b)

ϕπ∗(m)

(∑M
i=m+1 Pπ∗(i) + ρπ∗(m)

)
≤ Pπ∗(m),m ∈ M, (16c)

(14b) & (4c) − (4e). (16d)

with variables {Pπ∗(m)}, {ϕπ∗(m)} and t. From the definition
of ϕm, it is easy to know that ϕm > 0, ∀m, is always true,
which implies t > 0 in (16). Further, we introduce Proposition
4 related to (16).
Proposition 4: The optimal solution of (16) satisfies the

constraints in (16c) and (14b) with strictly equality and the
constraint in (4c) and (4d) with strictly inequality. In addition,
for (16b) the condition ϕπ(1) = · · · = ϕπ(M) = t will be met
at the optimal solution.

Proof: See proof in the Appendix B.
By applying Proposition 4 and using some manipulations

similar to the procedures as shown in the proof of Proposition
1, we can obtain the following equations:

Pπ∗(m) = tρπ∗(m) +
∑M

i=m+1 t
2(1 + t)i−m−1ρπ∗(i), (17a)

P =
∑M

m=1 t(1 + t)m−1ρπ∗(m). (17b)

It can be observed that (17b) is a non-linear equation, but it
can be solved by Newton’s method. Then, by substituting t
into (17a), we can calculate individual Pπ∗(m), ∀m.

IV. SOME DISCUSSIONS BETWEEN NOMA AND OMA
Note that, from the power expression (11) and (17a), to

achieve the minimum power or the maximum fairness rate, the
BS will allocate more power to the user with larger ρπ∗(j), for
all j ∈ M, since the user with the larger ρπ∗(j) will have a
higher priority in decoding order. Therefore, it is easy to see
from (11) and (17a) the power allocation coefficient for user
π∗(m) is a monotonically increasing function of the targeted
data rate R̃π∗(j) and the parameter ρπ∗(j) for any j, j ≥ m. To
compare the total transmit power between NOMA and OMA
from the perspective of outage probability constraints, the total
transmit power is calculated by using (4) in NOMA and OMA
systems separately. Without loss of generality, assume that
m = π∗(m) for convenience.

From (6) and (11), the total power satisfying the outage
constraint in NOMA systems can be calculated as

P =
∑M

m=1 2
∑m−1

i=1 R̃i(2R̃m − 1)ρm, (18)

Obviously, the total transmit power of NOMA is also mono-
tonically increasing with R̃m and ρm, for any m ∈ M.

For comparison, we introduce OMA as a comparable
scheme, which can support the data rate is given in the
following under the same configuration. Note that the conven-
tional OMA system, such as TDMA, requires M time slots to
support M users, while NOMA can support M users during
a single time slot. Thus, the achievable rate of OMA is

R̄m =
1

M
log

(
1 +

|hm|2P̄m

σ2

)
. (19)

Similar to (3), the outage probability of OMA can be obtained.
Note that the outage probability among each user in OMA is
decoupled; hence, all the outage constraints must be equal at
the optimal solution. Further, the total transmit power of OMA
is given by

P̄ =
∑M

m=1(2
MR̃m − 1)ρm. (20)

Therefore, the power difference between NOMA and OMA
schemes can be calculated as

dgap =

M∑
m=1

(
2
∑m−1

i=1 R̃i

(
2R̃m − 1

)
−
(
2MR̃m − 1

))
ρm (21a)

≤
∑M

m=1

(
2
∑m

i=1 R̃i − 2
∑m−1

i=1 R̃i − 2MR̃m + 1
)
ρ1, (21b)

= ρ1

(
(M − 1) + 2

∑M
m=1 R̃m −

M∑
m=1

2MR̃m

)
, (21c)

≤ ρ1
(
(M − 1) + 2

∑M
m=1 R̃m −M2

∑M
m=1 R̃m

)
, (21d)

where ρ1 > 0 if ϵ1 ̸= 1. Theorem 1 is employed in
(21b) and the inequality of arithmetic and geometric means
is used to (21d). Now define a function of g(M, {R̃m}) to
denote the r.h.s in (21d). The partial derivative ∂g(M,{R̃m})

∂M =

ρ1
(
1 − 2

∑M
m=1 R̃m

)
≤ 0 and ∂g(M,{R̃m})

∂R̃m
= ρ1(1 −

M)2
∑M

m=1 R̃m ln(2) ≤ 0. Thus, g(M, {R̃m}) is a monoton-
ically decreasing function of M and {R̃m} for any m, and
the maximum 0 is achieved when M = 1 or R̃m = 0 for any
m. In the downlink multiuser scenario, M ≥ 2 and R̃m > 0
is appropriate, as a result, dgap is always negative, which
indicates NOMA requires less power than OMA with the same
outage requirements and configurations.

V. SIMULATION RESULTS

In this section, we present the simulation results of the
proposed power allocation algorithm for NOMA systems by
using only the average CSI at the transmitter. For simulation,
we assume that all simulation configurations follow the system
model introduced in Section II with γ = 3. The distance
set from the users to the BS, D = {d1, · · · , dM}, can be
generated by an arithmetic sequence. Here, it is assumed that
D = {dm|dm = M − m + 1, ∀m} for simplicity. Further,
we suppose that all users have the same maximum outage
constraint ϵm = ϵ, ∀m, the same target rate R̃m = Rth, ∀m,
and the same noise power σ2 for convenience.
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Fig. 1. Total transmission power comparisions versus the noiser power and
the number of users.

Fig. 1 demonstrates the required minimum transmit power
in both NOMA systems and OMA systems, respectively. In
Fig. 1(a), the minimum transmit power is shown as a function
of 1

σ2 , where the targeted rate for NOMA Rth = 1 b/s/Hz. It
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can be observed from Fig. 1(a), the gap between NOMA and
OMA becomes larger with increasing M . Another important
observation is that the total transmit power has a linear
relationship with 1

σ2 in dB, which can be derived from (18)
and (20) in Section IV. Moreover, the impact of the number
of users on NOMA and OMA is demonstrated in Fig. 1(b).
From Fig. 1(b), the total transmit power will increase in order
to guarantee the outage constraint when the number of the
connected users increases. However, OMA will need more
power to serve the same number of users. For example, when
the transmit power is 0 dB and Rth = 0.5 b/s/Hz, NOMA can
support 25 users while OMA can support 13 users only. Fig. 1
also reveals that with increasing the number of users the gap
becomes a larger. Note also that as Rth increases, the slope
of the curves becomes steeper because it is more difficult to
ensure users with poor connections to be connected.
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Fig. 2. Outage probility ver-
sus total transmission power and
the number of users. Assume that
Rth = 1 and σ2 = −10dBm.
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Fig. 3. Fairness rate comparison-
s versus the total transmit power
under different user numbers with
σ2 = −10dBm and ϵ = 0.1.

Fig. 2 provides a comparison between NOMA and OMA
by depicting the achievable outage probability for different
numbers of users with varying minimum transmit power. It
can be seen from Fig. 2 that NOMA and OMA can achieve the
same diversity order, but the outage performance of NOMA
is always better than that of OMA. In fact, as the number of
users increases, the performance gain of NOMA over OMA
increases almost logarithmically. In Fig. 3, the impact of the
total transmit power and the user number on the maximum
fairness rate of NOMA and OMA can be observed. Clearly,
NOMA always outperforms OMA. In addition, the minimum
rate will be obtained with increasing the number of users.

VI. CONCLUSIONS

In this letter, the problem of optimal power allocation when
the transmitter only has average CSI has been studied in
downlink NOMA systems. Firstly, the problem to minimize
transmit power and to maximize fairness rate are investigated.
Furthermore, the power difference between NOMA and OMA
is derived. The main results of this work show that NOMA
can decrease the transmit power and enhance the fairness rate
by careful power allocation compared with OMA and is thus
a promising candidate technology in future 5G systems.

APPENDIX A
Let

xπ(m′)
ϕπ(m′)

= min
j=1,··· ,m

xπ(j)

ϕπ(j)
, then the outage constraint of

(9b) in user π(m) and π(m+ 1) can be written as
xπ(m′)

ϕπ(m′)
≥ ρπ(m), (22a)

min

{
xπ(m′)

ϕπ(m′)
,
xπ(m+1)

ϕ(m+ 1)

}
≥ ρπ(m+1), (22b)

From (22a) and (22b), one can observe that for a given π,
if ρπ(m) ≤ ρπ(m+1), we can exchange the decoding order
for user π(m) and user π(m + 1). The value of

xπ(m′)
ϕπ(m′)

is unchanged while the value of xπ(m+1)

ϕ(m+1) will decrease or
is kept unchanged. As a result, the transmission power in
problem (4) will either decrease or is kept the same while
not affecting other users’ outage constraints. Therefore, by
iteratively optimizing any two adjacent users the optimal
decoding order can be found with ρπ(m) in a decreasing order.

APPENDIX B
By replacing t with −t in the objective function and

(16b) with −t = maxm=1,··· ,M{−ϕπ∗(m)}, the optimization
problem in (16) becomes convex. Therefore, the following
Karush-Kuhn-Tucker (KKT) conditions [9] are necessary and
sufficient for optimality of (16):∑m−1

i=1 λπ∗(i)ϕπ∗(i) + ν = λπ∗(m) + µπ∗(m), (23a)

ϕπ∗(m)

(∑M
j=m+1 Pπ∗(j) + ρ∗π∗(m)

)
≤ Pπ∗(m), ∀m, (23b)

λπ∗(m)(ϕπ∗(m)

(∑M
j=m+1 Pπ∗(j) + ρ∗π∗(m)

)
− Pπ∗(m)) = 0, ∀m,

(23c)∑M
m=1 Pπ∗(m) ≤ P, (23d)

ν(
∑M

m=1 Pπ∗(m) − P ) = 0, (23e)
µπ∗(m)Pπ∗(m) = 0, (23f)
Pπ∗(m) ≥ 0, λπ∗(m) ≥ 0, ν ≥ 0, µπ∗(m) ≥ 0. (23g)

where λπ∗(m), µπ∗(m), ∀m, and ν are the Lagrange multipliers
for constraints (16c), (4d) and (14b) respectively. The right
hand side of (23b) is strictly positive for all m as ρ∗π∗(m) > 0,
ϕπ∗(m) > 0 and Pπ∗(m) ≥ 0; hence, the left hand side has to
be strictly positive which implies that the optimal P ∗

π∗(m) > 0
and µ∗

π∗(m) = 0 (from (23f)).
Now we show that the optimal ν∗ > 0 and λ∗

π∗(m) > 0,
∀m, by contradiction. If ν∗ = 0, from (23a), it follows that
λ∗
π∗(m) =

∑m−1
i=1 λπ∗(i)ϕπ∗(i)

τ∗
π∗(m)

, which implies λ∗
π∗(m) = 0, ∀m.

Obviously, this assumption contradicts with strong duality –
Slater’s condition [9]. Therefore, ν∗ > 0, it follows that
λ∗
π∗(m) =

∑m−1
i=1 λπ∗(i)ϕπ∗(i)+ν

τ∗
π∗(m)

> 0.
With λ∗

π∗(m) > 0, ν∗ > 0 and µ∗
π∗(m) = 0 as proved above,

conditions in (23c), (23e) and (23g) imply that all constraints
in (16c) and (14b) must be enforced with equality and in (4d)
with strictly inequality.

Finally, we show that ϕ∗
π∗(m) = · · · = ϕ∗

π∗(M) = t∗ at
the optimal solution. From the above proofs, (16) can be
formulated as an equality constrained minimization problem.
Furthermore, note that ϕπ∗(m) is not a function of Pπ∗(j),
j < m, and ϕπ∗(m) is monotonically increasing with Pπ∗(m)

and monotonically decreasing with Pπ∗(j), j > m. Assume
that t = ϕπ∗(m′) with existing ϕπ∗(m′) ≤ ϕπ∗(m1), m1 ̸= m′.
If m1 > m′, ϕπ∗(m1) has no relationship with Pπ∗(m′).
At this time, there exists an t1 > t can be attained by
decreasing Pπ∗(m1) and increasing Pπ∗(m′) under the total
power constraint. Otherwise, if m1 < m′, we can also find
an t1 > t by similar operations. Combining the two cases
above, one can conclude that ϕ∗

π∗(m) = t∗, ∀m. Proposition 4
is thus proved.
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